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The inequality method of determining signs of Fourier coefficients is discussed from the point of 
view of the average sizes of the coefficients. It is shown theoretically and confirmed empirically that 
for crystals containing atoms of approximately the same atomic factor, the root-mean-square 

average of I ~ I is U4IV, where iV is the number of atoms per cell. It is shown empirically that for N 

larger than about ten, F values are distributed about zero approximately according to the normal 
error curve. With these results it is first shown that the power of the inequalities varies little with 
symmetry if the number of atoms in the asymmetric unit is kept constant. It  is then shown that the 
simple inequalities cannot solve crystals of greater than moderate complexity, as judged by the 
number of atoms in the asymmetric unit, and that to attempt more complicated crystals will require 
more complicated inequalities. It is suggested that experimental errors may limit the usefulness of 
these more complicated expressions to the same range of crystals that can be solved by complete 
t h r e e - d i m e n s i o n a l ,  a b s o l u t e - s c a l e  P a t t e r s o n  m e t h o d s .  A t t e n t i o n  is c a l l ed  t o  a n  o l d e r  m e t h o d  b y  
B a ~ e r j  eo. 

Harker & Kasper (1948) have proposed an analytical 
method for determining phases of structure factors 
from their magnitudes, involving inequalities, and 
Gillis (1948) has described more complicated and pre- 
sumably more powerful inequalities in extension of 
their work. These authors have ably presented the 
mechanics and the advantages of the method. I would 
like to point out some practical limitations based on the 
sizes of the obseryed intensities. 

The importance of the magnitudes of the 'uni tary  
crystal structure factors', 1~ak ~ = Fa~/Zf¢, for the success 
of this method is obvious and Gillis (1948, §4.1) has 
stated the case succinctly: 'The bigger the value of 
] ~H ] the bigger the difference between + PH and- /~H,  
and so the better our prospects of being able to dis- 
criminate between the two analytically.' I t  is im- 
portant therefore to consider how large, on the average, 
We may expect these quantities to be for crystals of 
varying complexity. 

For the purpose of such a discussion it is convenient 
and proper to assume that  the N atoms of the unit cell 
are all the same; this is the important limiting case and 
from the solution for it one may estimate the result for 
any specific case. For this special case the fraction of the 
electrons in the unit cell which is on any one atom is 
1/N. Then, following the notation of the previous 
authors, we have for a crystal with no symmetry 

N 1  . 
Phi, = X ~ e2.% 

1 

N N  1 2~ 
and ( P P * ) ~ =  [ Phalli= ~ ~ ~ e  i(0j-~f). 

1 1 

* Con t r ibu t ion  no.  1231 f rom the  Gates  and  Crellin Labora -  
tories.  

Separating terms for which j = j '  gives 

1 
I PJ,~z ] 2= N + Z Z -~  e~'~(°~-°P. 

s J*J '  

Upon averaging this expression by summing over all 
possible hkl's and dividing by the number of such hkl's 
we may expect the double sum to average to zero, since 
in general negative and positive values of all magnitudes 
are equally probable, This will be true ff the data are 
sufficiently extensive to resolve the peak at the origin 
of the corresponding 'sharpened-up' Patterson series 
from neighboring peaks; for the summing of [2~akz ]~ 
over all hkl's gives the value of the Patterson function 
at the origin, while summing the double sum over hkl 
gives the contribution at.the origin from all peaks having 
maxima elsewhere (Patterson, 1935). The abrupt 
termination of the series will produce diffraction effects, 
but for N sufficiently large these will tend to cancel at 
the origin for the present case where all atoms are the 
same. Thus we have 

I Ph~zl ~= 1/;V, 
and for the root-mean-square value 

~ =  (I F ~  I~) ~= 1/4N. 
If  the crystal has symmetry such that  the general or 

special position occupied is p-fold for a simple cell, and 
the asymmetric unit present consists of n identical 
atoms, so that  N = p n ,  application of the above pro- 
cedure to the general hkl reflections which are not 
suppressed by symmetry shows that, as before, 

f ~,,~ [2= l /N=  1/pn, 
and ~hkZ= 1/~/N= 1/~/(pn). 

• But for special types of planes, with one or two of the 
indices zero or otherwise systematically restricted, one 
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may obtain different values. Thus for space group 
P21/a with general positions occupied,/9 =4 ,  N = d n ,  

and for general hkl's one finds 1/~ 12=~(1/n), but for 

h0/'s or 0k0's ] F ]~=l(1/n). For centered cells, if one 
ignores reflections forbidden by the centering, the 

values of [~nkz 12 correspond to those of a related 
primitive cell. I f  one deals with F rather than with/~, 

one finds tha t  F~ktis proportional to N, except as above 
when some indices are zero; then F 9' may be larger by 
some integral factor. 

The reliability of these expressions may be judged 
from Table i where calculated and observed values of 
are compared for several substances. 

In computing observed values the unobservably 
small values were included at one-haft of their estimated 
maximum possible value. These do not influence the 
result much, but  this procedure is more accurate than 
either ignoring them or calling them zero. Although the 
calculated values are for ceils containing only one kind 
of atom and the trial structures contain carbon and 
nitrogen, we see tha t  the agreement is within the experi- 
mental errors, which include those for determining both 
the absolute scale and the temperature factor. 

on parameters not imposed by crystal symmetry,  
should be easily recognized and might be useful. 
Deviations will also occur unless the data correspond to 
Patterson projections for which the peak at  the origin 
can be resolved from all others by 'sharpening-up' ,  as 
discussed above. The examples of Table 1 have been 
chosen to meet this criterion. For sufficiently extensive 
three-dimensional data this difficulty cannot arise. 

We may now consider the use of inequalities for sign 
determination in the light of these results. The simple 
inequalities of Harker and Kasper may be written in the 
general form 

12~,  12 < ~ [1 +¢(P)], 
where p is as above and ¢(~)  is some function of /~ 's  
related to /~hkt, usually a sum. This may be rewritten 

~ I P,~, l ~-  1 <¢(~). 
Now we have seen tha t  i ~hk~ 12 = 1/pn, so, if n, the 

size of the asymmetric unit, is kept constant, the left 
side of the inequality will, on the average, be the same 
for all symmetries. The right side is more difficult to 
discuss. The terms in ¢(~)  are not all of the same aver- 
age size, since/~'s with various indices zero occur and, 

Table 1. Comparison of calculated and observed values of 3" 
Space 

Example  Zone group Posi t ion n ~ eale. ~ obs. 

Dieyandiamide  (Hughes, 1940) hOl A2/a gen. 6 0.289 0.309 
Melamine (Hughes, 1941) hO1 P21/a gen. 9 0.235 0.246 
Melamine (Hughes, 1941) 0]¢I P21/a gem 9 0.167 0.167 
Cyanuric triazide (Knaggs, 1935) hIcO C63/m (h) 5 0-182 0.183 

[#lobs. l~])~ 
0.241 0-78 
0.186 0.76 
0.137 0.82 
0-147 0.80 

Mean 0.79 

In  the penultimate column the observed values of 

~_P[ are given. These are nearly a constant fraction of 
~obs. and the average of the ratio, 0.79, is almost 
exactly ~/(2/n) = 0.798, the ratio expected if the distribu- 
tion of P values about zero follows the normal error 
curve. Since I~1 ( 1, they cannot follow such a curve 
exactly, but plots of the data used in computing 
Table 1 indicate that  the values do follow such a curve 
approximately and this will probably be true if N is 
large enough to prevent the occurrence of large numbers 
of large [/~ ['s. This empirical result is of considerable 
importance as it shows that  if N is sufficiently large we 
may expect only about 10 % of the I/~ I's to exceed 
1.7~ and about one in a thousand to exceed 3.38. I t  
thus provides a method for estimating how many ] ~ ]'s 
of a given size may be expected ibr a crystal of given 
complexity. These predictions are followed closely by 
the data on which Table 1 is based; there are no ] ~ l ' s  
exceeding 3.3~ out of 420 observations, and 44 exceed- 
ing 1.75. 

These rules may not be followed exactly for excep- 
t i o n a l  cases, such as for certain I ~ [ ' s  in a layer 

structure; if the layering is in some family of planes, the 
~ ' s  of orders of these planes will all be 1 regardless of the 
predicted value of~. Such deviations, due to restrictions 

as noted above, some of these have larger average values 
than do those with all indices different from zero. 
Moreover, some of the terms are multiplied by constant 
factors. The number of terms increases with increasing 
p, but  the average size of the terms generally decreases 
with increasing p, n always being constant. Inspection 
of the expressions for a number of space groups 
suggests that  the average sum of the absolute magni- 
tudes of the terms in ¢(P) increases with increasing p 
even though the average size of each term generally 
decreases. Now in order to establish a sign for a given P 
it is necessary that  it be large enough to contravert the 
inequality even if all the other ~ ' s  involved should 
happen to be of opposite sign, but merely to establish 
that  the P ' s  of ¢(P)  are not all negative it is only 
required tha t  the sum of their absolute magnitudes 
exceed the inequality. I t  therefore seems reasonable to 
expect t ha t  as p increases it will become easier to 
establish sign relationships between two or more _~'s, 
but more difficult to establish an actual sign. Thus, it 
seems doubtful if one can say that.  the inequalities' 
'become more powerful as the number of symmetry  
elements increases'. This s tatement would be true in- 
contestably if N, rather than n, were kept constant, for 
then the average sizes of the P ' s  would not decrease as 

3-2 
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p increases. But  this hardly seems a fair way to make 
the. comparison, since it is almost universally customary 
to judge the difficulty of a crystal structure determina- 
tion by, among other items, the size of the asymmetric 
unit. 

By far the most important  conclusion to be drawn 
from these values of ~ is one regarding the overall 
applicability of the inequalities. We see tha t  as n in- 
creases and ~ decreases there will be a smaller and 
smaller fraction of the/~ 's  which can be given signs by  
the simple inequalities, and finally for large enough n 
the number of signs fixed will be so few tha t  a start  
cannot be made upon the structure determination by  
Fourier syntheses. 

For oxalic acid dihydrate, a known crystal reworked 
by Gillis (1948) as a test, n--4.  Dekaborane, a crystal 
presenting great difficulties because of twinning, vola- 
t i l i ty and faulty chemistry, has been solved by Kasper, 
Lucht & Harker (1948) by means of inequalities. At 
first sight this appears to have n = 10, but  actually each 
of the atoms is related to another one by rigorous 
general non-crystallographic relationships between 
their parameters; and upon working out the details the 
problem corresponds to n = 5 both with regard to the 
size of the 19's and the nature of the inequalities used, 
which were those of space group Pnnm and a pseudo- 
cell with one-half the volume of the smallest true 
cell. 

I t  thus appears tha t  these two successful applications 
are not fair tests of the ability of this method to solve 
the more complicated problems of interest to-day, some 
of which have been solved by older methods with n as 
high as 20 or more. In  this connection it may be noted 
tha t  the simple inequalities are unable to solve the 
melamine problem, n--9,  with the data available 
(hOl and Ok/); with some 150 P 's  large enough to be 
observed only two signs are fixed for the second-order 
~ 's ,  and the lat ter  are quite small. Two sign relation- 
ships are also established for pairs of _~'s. 

For/?-carotene, a hydrocarbon (Taylor, 1937) with 
h space group P21/c and n--  20, we expect Cak~ = 0.112 and 

~h0~= 0"158, and for this latter zone it appears unlikely 
tha t  any ~ will exceed 0.520 in absolute value. Taylor 
gives the absolute measurements for the seventy-five 
reflections of largest spacing and no I P l exceeds 0-24. 
The simple inequalities can fix no signs for those data 
given by Taylor, and it appears fairly certain tha t  they 
could fix no signs for the entire crystal if data were 
available. 

Thus, in attempting to solve more and more compli- 
cated problems it is certain tha t  one must resort to 
more and more complicated inequalities. In discussing 
these complicated inequalities the previous authors 

'make statements to the effect that  ' i f  some of the signs 
are already known, these inequalities provide powerful 
tools for determining the remaining signs'. This is true, 
but for the situation envisaged here the simpler in- 
equalities will have produced few, or even no signs as a 

BY MEANS OF INEQUALITIES 

basis for further operations and the more complicated 
expressions will have to work without assistance. 

Then; however, two further complications arise. 
These inequalities involve a progressively larger and 
larger number of terms, and often terms of higher and 
higher degree. Firstly, these facts will make the method 
more tedious and time-consuming, and Harker & 
Kasper have already described it as laborious. And 
secondly, the influence of experimental errors in t h e  
/~'s will become more and more critical. These errors 
involve not only the actual error in each F,  but  also the 
scale factor, the temperature factor or factors and the 
errors involved in assuming, in deriving the inequalities, 
tha t  f j=fZ~,  with the last error sometimes more 
serious than usually supposed. When numbers con- 
ta~niug errors are raised to powers, the resulting per- 
centage errors are roughly proportional to the powers, 
and upon adding ~uch terms the overall probable per- 
centage error in the sum, for errors of the size en- 
countered in measurements of/~, may easily become so 
large as to vitiate the application of these more com- 
plicated inequalities. Experience with a related sign- 
determining method, referred to below, which involves 
many terms and some of higher degree, has emphasized 
these doubts regarding the usefulness of complicated 
relationships. 

I t  does not seem practical at the moment to estimate 
theoretically what limit, if any, the experimental errors 
will set. I t  does, however, seem fair to say that ,  until it 
is proved otherwise by actual accomplishment, it would 
be unwarranted to assert tha t  the method of in- 
equalities is able to solve problems tha t  generally cannot 
be solved by complete three-dimensional, sharpened- 
up, absolute-scale Pat terson methods. I t  would seem 
wiser, pro tern., to consider the method as a useful and 
welcome adjunct to the whole body of existing methods 
rather than as a technique destined to outmode all 
others. I t  is apt  to be particularly useful in problems 
such as dekaborane where the chemistry is obscure or 
even wrong. 

The power of the complete three-dimensional 
sharpened-up Pat terson synthesis is perhaps not as 
widely realized as it should be, perhaps because of the 
tediousness of computing such a complete series before 
the recent development of rapid mechanical and 
electrical summing devices. I t  utilizes all the informa- 
tion put  into the inequality method and has the 
additional advantage tha t  all reliable chemical and 
physical evidence available can be utilized in inter- 
preting the diagram. Although in his original paper 
Patterson (1935) pointed out the advantages of 
sharpening-up the series by dividing the da ta  by  f2, 
very few investigators have ever used this refinement. 
Harker & Kasper (1948) have stated tha t  such sharpen- 
ing is 'almost essential' to the inequality method. 
Experience in this Laboratory (Schomaker & Shoe- 
maker, to be published) indicates tha t  although in the 
past solutions have often resulted from ordinary 
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Patterson functions, the use of complete sharpened-up 
absolute data will greatly extend the power of the 
method. 

In conclusion I would like to recall to attention a 
much earlier a t tempt  at  deriving the signs of Fourier 
coefficients from their magnitudes. The paper by 
Banerjee (1933) appears to have been generally over- 
looked in the current interest in this subject. Gillis 
(1948, §4.3) has suggested the probable existence of 
fundamentally stronger relationships. Obviously the 
most powerful relationships possible, ignoring the 
difficulties arising from experimental errors, are 
rigorous equations (not inequalities) relating P's.  
Banerjee showed how, with the theory of symmetric 
functions, some such relationships could be derived for 
crystals containing one kind of atom and a center of 
symmetry.  He applied his method to the 001 data of 
anthracene and obtained all the signs correctly. No 
further work along these lines appears to have been 

reported. I t  is possible in principle to extend Banerjee's 
results to more general crystals, for example by means 
of bipartite and triparti te symmetric functions, but for 
the mult iparameter  problems of interest to-day the 
expressions promise to be too complicated for practical 
use. 
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Banerjee has given a linear relationship between certain structure factors, 2'hk ~, of a crystal 
which may be useful in determining their signs. His equation is applicable only to crystals 
containing~ but one kind of atom. In this note a similar equation is derived for 'unitary structure 
factors', Fhk~, which is applicable to any crystal. 

In  a previous article (Hughes, 1949) attention has been 
called to the work of Banerjee (1933) on the determina- 
tion of signs of Fourier coefficients from their magni- 
tudes. His results are applicable only to crystals con- 
taining one kind of atom. 

One of his results may, however, be easily extended 
to the more general case and this will be given here as it 
might prove useful in checking or determining signs for 
crystals of not too great complexity. 

Let us rewrite the expression for P in Banerjee's 
notation 

N 
~hk~ = Z h k ~ 

1 

where q~ is the fraction of the electrons on the j t h  atom, 
a.--eg"i~J and similarly for fl~ and 7~ 3 - -  ' 

We then set up a polynomial in the dummy variables 
u, v and w corresponding to a, fl and 7, such tha t  the 

* Contribution no. 1229 from the Gates and Crellin Labora- 
tories. 

aj's, for instance, are roots of the polynomial 
N 

u ~ v k w ~ l-I (u - a~) = u N+~ v k w ~ + a 1 u y+h-1 v k w ~ 
i . . . . . .  ~- a N _  1 u a+l v ~ w ~ ~ a N u h v k w z, 

where h, k and 1 may be chosen arbitrarily. 
If  there is a center of symmetry  at the origin, and no 

atoms are located at centers of symmetry,  the roots occur 
in reciprocal pairs (al = a - 1  etc.) and in these circum- 
stances a N -~ 1, aN_  1 = al  , etc., thus reducing the number 
of constants ai to ½N. Substitution of any a j , / ? j ,  yj 
triple into this polynomial causes it to vanish since the 
aj's are all roots. Making this substitution and multi- 
plying by qj yields, for our special case, 

qj(ct~+nfl~ ~ + c¢~ fl~ y~) + a 1 qj(ctN+~-lfl~ ~ + 0ch+l~ ~/~) 
-~ . . . . . .  + a½i  qj O¢i½N+hfl~'~ --~ O. 

Summing the N equations with all possiblej 's and com- 
paring with the expression for leak ~ yields 

/~N +h.~,, ÷/~ak, + al (/~N-1 +h,k,,-}" ~h +1,,¢,1) 

~- . . . . . .  -b a½N ~½N +hJ¢,Z -- O. 


